Expressing ScACR3 in rice enhanced arsenite efflux and reduced arsenic accumulation in rice grains.

نویسندگان

  • Guilan Duan
  • Takehiro Kamiya
  • Satoru Ishikawa
  • Tomohito Arao
  • Toru Fujiwara
چکیده

Arsenic (As) accumulation in rice grain poses a serious health risk to populations with high rice consumption. Extrusion of arsenite [As(III)] by ScAcr3p is the major arsenic detoxification mechanism in Saccharomyces cerevisiae. However, ScAcr3p homolog is absent in higher plants, including rice. In this study, ScACR3 was introduced into rice and expressed under the control of the Cauliflower mosaic virus (CaMV) 35S promoter. In the transgenic lines, As concentrations in shoots and roots were about 30% lower than in the wild type, while the As translocation factors were similar between transgenic lines and the wild type. The roots of transgenic plants exhibited significantly higher As efflux activities than those of the wild type. Within 24 h exposure to 10 μM arsenate [As(V)], roots of ScACR3-expressing plants extruded 80% of absorbed As(V) to the external solution as As(III), while roots of the wild type extruded 50% of absorbed As(V). Additionally, by exposing the As-containing rice plants to an As-lacking solution for 24 h, about 30% of the total As derived from pre-treatment was extruded to the external solution by ScACR3-expressing plants, while about 15% of As was extruded by wild-type plants. Importantly, ScACR3 expression significantly reduced As accumulation in rice straws and grains. When grown in flooded soil irrigated with As(III)-containing water, the As concentration in husk and brown rice of the transgenic lines was reduced by 30 and 20%, respectively, compared with the wild type. This study reports a potential strategy to reduce As accumulation in the food chain by expressing heterologous genes in crops.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arsenic Transport in Rice and Biological Solutions to Reduce Arsenic Risk from Rice

Rice (Oryza sativa L.) feeds ∼3 billion people. Due to the wide occurrence of arsenic (As) pollution in paddy soils and its efficient plant uptake, As in rice grains presents health risks. Genetic manipulation may offer an effective approach to reduce As accumulation in rice grains. The genetics of As uptake and metabolism have been elucidated and target genes have been identified for genetic e...

متن کامل

Transporters of arsenite in rice and their role in arsenic accumulation in rice grain.

Arsenic poisoning affects millions of people worldwide. Human arsenic intake from rice consumption can be substantial because rice is particularly efficient in assimilating arsenic from paddy soils, although the mechanism has not been elucidated. Here we report that two different types of transporters mediate transport of arsenite, the predominant form of arsenic in paddy soil, from the externa...

متن کامل

Rapid response of rice plants to arsenite toxicity

Absorption of arsenic (As) by plant root is an essential activity that bridges the soil As concentration and physiological responses which can be monitored soon after exposure to As. In the present study, physiological responses to short exposure to arsenite (AsIII) was compared in two indigenous rice cultivars one adapted to temperate and humid (TH) and the second one to warm and humid (WH) cl...

متن کامل

Arsenic Tracking in Iranian Rice: Analysis of Agricultural Soil and Water, Unpolished Rice and White Rice

Since rice is a staple food most consumed world-wide, there have been increasing health concerns regarding exposure to arsenic through rice consumption. Several studies have reported the accumulation of arsenic in rice grains cultivated in regions with elevated levels of arsenic in groundwater or contaminated soil. Therefore the principal aim of this study was determining the amount of arsenic ...

متن کامل

Growing rice aerobically markedly decreases arsenic accumulation.

Arsenic (As) exposure from consumption of rice can be substantial, particularly for the population on a subsistence rice diet in South Asia. Paddy rice has a much enhanced As accumulation compared with other cereal crops, and practical measures are urgently needed to decrease As transfer from soil to grain. We investigated the dynamics of As speciation in the soil solution under both flooded an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 53 1  شماره 

صفحات  -

تاریخ انتشار 2012